3D Printing Material: Multijet Fusion PA12 (HP Black Plastic)

Headphone black plastic detail detail gris strates
accueil small detail small size small strates small



Overview

Here you will find all the information, tricks, know-how, and advice to help you print your 3D model in our Multijet Fusion PA12 material.


You will learn about the:

General information & Printing Techniques

Our Multijet Fusion PA12 Material

The Multijet Fusion PA12 objects printed through Sculpteo are created from a fine polyamide powder. The material is characterized by good elasticity and high impact resistance, unlike some of the other materials offered by Sculpteo. Moreover, polyamide has an excellent resistance to chemicals, especially hydrocarbons, aldehydes, ketones, mineral bases and salts, alcohols, fuels, detergents, oils and fats. HP black plastic is great for both experienced professionals and beginning designers because of its high precision.

The Multijet Fusion PA12 objects are well suited against scratches and abrasion. It is also light stabilized, U.V. stabilized and stable to weather. This 3D printing material is biocompatible. Unpolished, the material is black and relatively smooth. It is possible to paint your objects at home using material-specific techniques. To learn more, refer to our paragraph about finishes and colors for polyamide models.


Processing Times and Pricing

The printing price of your design is calculated automatically the moment it is placed online. As you modify your object (changing size, using batch control or hollowing feature, etc.) you will note that the price changes automatically. The pricing is based on a series of factors, including: total volume, object size, and bounding box - to name a few.

Your Multijet Fusion PA12 object is estimated to arrive in 5-7 business days. Particularly large objects can extend the processing time by 1-2 days on average. The estimated shipping time is also calculated automatically as the object is uploaded.

Delivery time should be added to processing time and depends on the delivery option you choose.


Printing techniques

PrinterHPJetFusion.jpg

Sculpteo uses a process called Multi Jet Fusion invented by HP for our Multi Jet Fusion PA12. After your design is uploaded to the Sculpteo website, it undergoes a couple of steps before it is physically created:

  • Model transferred to 3D printer
  • Once you upload your 3D model to our website, it is received by a Sculpteo team member, who expertly places the model into the next available batch. To 3D print your Multijet Fusion PA12 object, we use the HP Multi Jet Fusion 3D 4200.

  • Object is 3D printed
  • The Multi Jet Fusion process is similar to binder jetting technology as it uses a liquid binding agent to create the layers of your object. In addition, a detailing agent is used to obtain fine details and to smooth the surface of the object. Layer by layer, the object is created from the combination of the powder, the liquid agents (fusing and detailing) and the energy (heating process). 

  • Removal from Batch
  • The HP process is faster than SLS technology but it still needs to cool. When the parts are 3D printed, the building box is placed into the post-processing station that cools the parts and prepares them for cleaning. The object is extracted from the powder which is sieved and partly recycled for another 3D printing batch.

  • Brushing and Sandblasting
  • The object is then brushed, which removes a large portion of the polyamide powder, and vacuum-cleaned, which removes the fine polyamide powder that the brush may have missed. 

jet Fusion process.png

      
Uses and Maintenance

Our Multijet Fusion PA12  offers great flexibility when 3D printing, especially complex models, as it is flexible, offers high impact resistance, is light stabilized and is stable to every weather. As a result, the objects in this material have a wide range of uses from mechanical (prototypes, geared systems, articulated objects, etc.), electrical, medical, ornamental, or even educational. In the automotive industry, it is mainly used for interior components for crash relevant parts.

Technical properties of the Multijet Fusion PA12 change depending on the thickness of your model. With a 0.6 mm wall thickness, your model will be flexible. With a 2 mm wall thickness, it will be rigid. Please check our blog post on elastic modulus measurements for more information on flexibility.

With regards to water qualities, Multijet Fusion PA12 is water-resistant but not waterproof. Thus the 3D object must not rest in contact with water for extended periods of time. In terms of temperature, if the plastic is subjected to heat above 187°C (369°F), it is possible that the physical form of the object can significantly altered.

Finishes

Finishing Options


There is only one finishing option available through Sculpteo for the Multijet Fusion PA12:

  • Raw: surface is relatively smooth but is unpolished, most economical.

Your Multijet Fusion PA12 part is made from a reusable polyamide powder. 


HP 2.jpg
Paint and glue your polyamide parts

It is also possible to arrive at finer levels of finishing at home with various DIY techniques. To learn more, you can refer to our tutorial about gluing and painting polyamide models.

Design Guidelines

Printing Resolution

Layer Thickness 80 µm
Accuracy ± 0.3%

Size Limitations

Maximum size unpolished 250 × 250 × 250 mm
HP.png

The maximum size of your models are limited by the physical size of our 3D printers - nothing can be printed larger than the printer bed. 

There is no minimum size for polyamide prints, keeping in mind minimum thickness for walls and structural aspects, to ensure the object will not break is 0.6 mm.


Minimum Thickness and Geometry of Your 3D Model

Minimum wall thickness (flexible) 0.6 mm
Minimum wall thickness (rigid) 2 mm
Minimum wall thickness stemmed elements 0.7 mm with support
0.9 mm without support
Minimum wall thickness particular design aspects 1-2 mm

Diagram to show the minimum thicknessof your 3D print model

The walls of your design must adhere to a minimum thickness of 0.6 mm in order to guarantee the structure will not break. If the walls of your model are less than 0.6 mm, you can to add a support structure to maintain stability.

A stemmed element is a design aspect which is at least twice as long as it is thick. For unsupported and stemmed elements or parts of the design with a particular design constraint, it is also important to respect a minimum thickness of 0.9 mm in order to guarantee the object will not break.

Tips
Icon to show that you can ad a support structure to maintain stability

Add a support structure to maintain stability. For example, if you are modelling a bust of a person, you can attach thin aspects of the design like the ears in more places around the model’s head. Doing that will avoid cantilevered and easily breakable elements in the final print.



With a 0.6 wall thickness, your design will be slightly flexible. To obtain more rigidity, we advise you to choose a 2 mm wall thickness.

Good to know

Thin walls supporting large, heavy plastic models can warp under the weight of itself.



Sculpteo offers an online solidity check tool which highlights parts of the print that may be too thin for a print. From there you are able to tweak your design in order to create an object that is an appropriate thickness. To use it, you just need to upload your 3D file, select your material and click on “Verification” tab.

It is also important to keep in mind that the object is to be printed into real life. Thus if a thin aspect is supporting something that is too heavy for it, it may break - even though it is possible within the physics provided by your 3D modeling software. We recommend adding a bit of thickness to the places that will get a lot of handling, or that support the most weight.

Do not forget
Icon to keep in mind that solidity check tool don't detect physical aberrations

Keep in mind that our solidity check tool does not detect physical aberrations such as floating parts, unstable position, parts supporting too much weight relative to its thickness, etc. Particular care must be given to the geometry of your design and the most stressed parts must be thickened.


Etching/Embossing Depths

Minimum size of details 0.2 mm
Minimum height and width details Embossed : 0.2 mm
Engraved : 0.2 mm
Minimum height and width for a readable text 0.4 mm
Enlargement ratio 1/1

Diagram to show the etching and embossing depths

A detail’s minimum precision is mainly determined by the resolution of our 3D printers. However, during the cleaning process, a fine layer of detail can also be lost. In order for a detail and text to be visible we recommend following our recommended sizes at the very least.

It’s possible that particularly fine embossings and engravings will not be visible, as the carving could get filled with excess powder that is later unable to be cleaned out. If an embossing or engraving is an essential part of your design we recommend making them as deep as possible. To ensure a better powder removal (thus a better detail visibility), the width of your details must be at least as big as depth.


Embossing.png

Enclosed and Interlocking Volumes

Enclosed parts ? Yes
Interlocking parts ? Yes

PA details

Our Multijet Fusion PA12 material has the ability to print the most complex designs of our materials. An example of a complex design is a volume enclosed within another volume, like a chain or maraca. Our 3D printers have the ability to 3D print a fully interlocked chain our of the printer, with no support structures to remove.

Minimum Spacing and Clearances

Minimum spacing between fixed walls 0.5 mm
Minimum clearance between parts 0.5 mm

Diagram to show the minimum spacing and clearance need to a 3D print

For a successful 3D print a minimum clearance between objects is required to allow excess material to be blown out. If this space is not left within the design, the object will be a solid. This is particularly important for articulated objects - as the space left between the walls will define the object’s ability to move.

Clearance should be at least 0.5 mm and depends on your objects size. For big sizes, the clearance should be greater. The heated zone of your object depends on the size, the larger the object the more time it will be exposed to high temperature : if the space left between the walls is too small, it will be weld because of heat spreading. In some cases, holes should be added to allow us to drain for the excess powder material within the clearance.

Piece Assembly Restrictions

Assembly ? Yes
Minimum space 0.5 mm

PA details

Objects printed in Multijet Fusion PA12 can be printed to be assembled. As long as a width of at least 0.5 mm is left between the different parts of the object.

Hollowing

Hollowing ? Yes

Diagram to optimize the hollowing

Our online hollowing optimization tool has the ability to greatly reduce the price of a print by reducing the amount of material used.

Using the tool requires adding two holes to your model, which will serve as the drain for the excess powder material within the object. The minimum size of these holes is determined by our website. Thickness of the hole will also be considered. Otherwise it is possible to hollow your object manually in your 3D modeling software. 

Files with multiple objects

Files with Multiple Objects ? No

Icon to show that you can't print a 3D file containing several objects

It is not possible to 3D print a 3D file containing several objects with our 3D plastic printers.

Technical specifications

Mechanical Properties Conditions Unit Value
Density of part ASTM D792 g/cm3 1.01
Tensile Modulus ASTM D638 MPa 1700
Tensile strength ASTM D638 MPa 48
Elongation at break ASTM D638 % 20
Melting point ASTM D3418 °C 187

For more information about our Multijet Fusion PA12's specifications, refer to the following document: 



Upload a file

Other materials available on Sculpteo:

  • Plastic

    Plastic is a great starter material. Strong, with a fairly good level of detail and slightly flexible, it comes in a wide range of colors. If you're not sure which material to go with, plastic is a...

  • Multicolor

    A plaster-like material that is colored as it prints. Excellent for purely decorative items but its brittle nature means shocks or friction should be avoided. Contact with water should also be...

  • Black Plastic

    This plastic is made from black powder and offers a continuous coloring that is resistant to abrasion. The surface has a sanded, grainy texture which can be polished. Being both solid and flexible,...

  • Stainless Steel

    Our Stainless Steel creates 3D printed objects from a fine metallic powder. Stainless Steel is used for various industries such as automotive, energy or high-tech products. We 3D print Stainless...